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a b s t r a c t 

Due to importantly beneficial effects on physical and mental health and strong association with many rehabilita- 
tion programs, Physical Activity Recognition and Measure (PARM) has been widely recognised as a key paradigm 

for a variety of smart healthcare applications. Traditional methods for PARM relies on designing and utilising 
Data fusion or machine learning techniques in processing ambient and wearable sensing data for classifying types 
of physical activity and removing their uncertainties. Yet they mostly focus on controlled environments with the 
aim of increasing types of identifiable activity subjects, improved recognition accuracy and measure robustness. 
The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to an open and 
dynamic uncontrolled ecosystem by connecting heterogeneous cost-effective wearable devices and mobile apps 
and various groups of users [35] . Little is currently known about whether traditional Data fusion techniques can 
tackle new challenges of IoT environments and how to effectively harness and improve these technologies. In an 
effort to understand potential use and opportunities of Data fusion techniques in IoT enabled PARM applications, 
this paper will give a systematic review, critically examining PARM studies from a perspective of a novel 3D dy- 
namic IoT based physical activity collection and validation model. It summarized traditional state-of-the-art data 
fusion techniques from three plane domains in the 3D dynamic IoT model: devices, persons and timeline. The 
paper goes on to identify some new research trends and challenges of data fusion techniques in the IoT enabled 
PARM studies, and discusses some key enabling techniques for tackling them. 
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. Introduction 

As one of the most representative indicators to personal health and
ell-being, effective and efficient Physical Activity Recognition and
easure (PARM) has been posing great significance on a wide range of

linical practice and health applications. Objective assessment of phys-
cal activity (PA) will provide a personalised manner for various people
ith chronic disease in terms of a series of behaviour analysis [1] . A
orld Health Organization (WHO) survey has identified physical inac-

ivity as the fourth leading risk factor for global mortality causing an
stimated 3.2 million deaths [2] . Low levels of PA are detrimental to
ealth and functioning of older people, and may cause many chronic
iseases such as diabetes, obesity, cancers, etc. 

To date, a large amount of studies of PARM have been carried out in
 variety of smart healthcare applications. The primary goal of PARM
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s to recognize the type, duration, intensity of a wide range of activities
nd quantify their associated parameters like the energy expenditure.
mongst these studies, multiple sensor data fusion approaches for PARM
ave been increasingly utilised due to its remarkable accuracy on clas-
ification and estimation. Typical workflow of these methods is to first
lace multiple sensors [3–5] at different locations on the human-body,
nd extract distinguished features from these sensors, finally investigate
achine learning or data fusion algorithms for training these features

nto specific several activity subjects [6–9] . For example, support vec-
or machines (SVM) have been studied in fall detection [10] , gesture
lassification [11] , electroencephalogram artefact removal [12] , etc. K-
earest neighbour (KNN) and Bayes technique have been investigated
or classifying PA types from either single accelerometer [13] or multi-
le types of sensors [12] . Artificial neural network (ANN) and decision
ree model are also used for PA recognition with fusing data from ac-
elerometers and GPS [14] . While these techniques have demonstrated
ood classification results in PARM application, their utilisation is
ber 2019 
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ubject to a number of constraints: (1) a prior knowledge and intuitive
odelling of different PA activities are required to build a classifica-

ion model. (2). Features of many complexed or translational PA are too
eak and insensitive to be recognised. (3). They are only suitable to the

xperimental controlled environments with small variations and little
nfluencing issues, but hardly copy with uncontrolled environment. 

Apart from that, recent emergence of the Internet of Things (IoT)
nabling technology is transferring PARM studies to an open and
ynamic uncontrolled ecosystem by connecting heterogeneous cost-
ffective wearable devices and mobile apps and various groups of users.
his trend even poses more challenges in expanding traditional data
usion technique into IoT ecosystem. Foerster et al. [15] demonstrated
5.6% of accuracy for PARM in a controlled data collection experiment
ut dropped to 66% in an uncontrolled environment. Another inves-
igations reported in [16,17] also found the same results. The crucial
actor is that the free living environment contains numerous uncertain-
ies, capturing one’s entire life using digital devices for health and well-
ess becomes extremely difficult [18] . The uncertain factors include the
uantity of wearable sensors, battery and capacity consumptions and
ersonalised physical characteristics. 

To our knowledge, data fusion are effective approaches to reduce
ncertainties, enhance reliabilities, and improve recognition accuracy
nd precision. Multi-sensor data fusion techniques have a mature foun-
ation and provide satisfactory performances in many subjects of ac-
ivities. Some surveys also have well summarized them from the per-
pective of view of techniques’ level in sensing, feature and learning
usion [12] . However, little work has been systematically surveyed on
hether existing data fusion techniques can be extended to real living
nvironment for lifelogging PARM applications. For instance, typical IoT
nabled PARM applications include: (1) abnormal behaviours or activ-
ty identification from life-long high-volume data or activity and phys-
cal states changes towards independent living elder citizens. (2) How
o offer assisted information for physicians to carry out medical inter-
ention and PA recommendation. In these IoT personalized healthcare
nvironments, PA data are discretely daily basis from globally heteroge-
eous third party devices. Traditional multi-sensor data fusion methods
n PARM hardly deal with these scattered and heterogeneous data. Also,
ue to diversity and changes of personal lifestyles, lifelogging physical
ctivity (LPA) data in IoT enabled personalized healthcare systems has
emarkable uncertainties. 

In an effect to understand advanced data fusion technology in IoT
nabled PRAM, this paper conducts a survey on recent advanced data
usion technology from the perspective of a novel 3D dynamic IoT based
hysical activity collection and validation model [19] . As shown in
ig. 1 , the review is taking consideration of three aspects of PA data
usion from devices, persons and timeline, respectively. Each plane is
ade of two fusion dimensions: Devices ×Timeline, Persons ×Devices and
imeline ×Persons . The first one emphases multi-device fusion applied
n different group of people. The second one is to utilise a single device
o adopt different group of people for lifelogging PARM and the third
ne is to fit multi-device fusion to different group of people. 

We undertook an extensive literature review by examining rele-
ant articles from major academic databases (IEEE Xplore, ACM digi-
al library and Science-Direct). Key search terms include the key words
wearable computing’, ‘data fusion’, ‘sensor fusion’ and ‘activity recog-
ition’ and a wide range of other technologies. In addition, we reviewed
he research projects related to IoT, e-health, smart healthcare, etc., by
earching from EU, TSB and EPSRC funded projects. Our review focuses
n identifying the breadth and diversity of existing research in advanced
ata fusion techniques in IoT enabled PRAM, including from three as-
ects in an IoT platform: devices, persons and timeline. The paper goes
n to identify some new research trends and challenges of data fusion
echniques in the IoT enabled PARM studies, and discusses some key
nabling techniques for tackling them. 
270 
The rest of the paper is organized as follows. Section II presents
he survey methodology of this paper. Section III, IV and V separately
eview key enabling technologies from device-timeline, device-person,
nd person-timeline. Section VI discusses research challenges and future
rends. Conclusion is given in Section VII. 

. Methodology 

.1. IoT based PA data acquisition model 

Our survey methodology is based on our work related to lifelogging
ata validation model LPAV-IoT [33] , which has concerned the acquisi-
ion of physical activity data in an IoT environment from three aspects:
evices, person and timeline. 

Fig. 2 shows the data of PA collected from an IoT environment, PA
ata are measured as a 3D cube which are type of devices, number of
ersons and timeline. In terms of increment in any dimension results in
n expansion of the PA data grid, the fusion techniques are categorised
nto three 2D plane (Persons ×TimeLine), which refers to scenarios that
ingle device is used by increasing population over time. PAR with sens-
ng level fusion appears on a 2D plane (Devices ×TimeLine) for classify-
ng individual person’s activities with historical PA data. And another 2D
lane (timeline ×persons) demonstrates the flexibility of existing sen-
ors performance on PARM. Categories and their explanation are shown
n the Table 1 . 

As shown in Fig. 2 , The model validates the workflow of PA as a
ynamic recursive process along the time axis. Validation rules are ini-
iated by entering a set of historical raw PA data in the 3D model, and
hen is exploited to verify the existing PA. Historical raw PA data would
xpand with more users or devices over time. Also, the validation rules
an be dynamically updated through new PA data. In addition, the 3D
odel provides a configuration for adding information of people and
evice dimensions. It adaptively supports requirements from different
sers or groups. 

In the model, the plane of devices and timeline refers to multiple
evices attached on different part of an individual’s body, especially
argeting on a specific type of group such as age or heathy statues. The
A data are scattered along with timeline axis, so as to monitor lifel-
gging PA. It tends to be, however, impractical and uncomfortable to
lace multiple devices/sensors on an individual’s body for permanent
onitoring. Whilst the current requirements of power and consumption

f the motion devices may also lead to difficulties in PARM in free liv-
ng environment. For that purpose, the fusion procedures are normally
chieved in sensory level. Typical approaches include Kalman filtering
20,21] and weight average [12] . Also, some commercial devices like
itbit (a wristband) [22] or Moves (an mobile app) [23] with wrapped
nd processed datasets (i.e., steps or calories) are exploited in our pre-
ious work [19,24,25] for lifelogging PA monitoring under such uncon-
rolled environment. 

The plane of persons and devices is to attaching multiple devices on
n individual’s body in order to adapt to different group of subjects with
ifferent physical characteristics for a short-term PA recognition mostly
n the lab or uncontrolled environment. The data collected through pre-
ise motion devices (e.g., Shimmer TM) [7,26–28] . Advanced machine
earning algorithms are the popular approaches adopted in this circum-
tance for multiple sensors’ fusion. However, due to the diverse physical
haracteristics, different people may perform PA in different manners,
he training model fits one type of group may not be fit another one,
hus, two types of PAR adaptability method are proposed which are
ubject dependant and subject independent [29] . The first one is to use
old cross-validation over each subject’s data and averaged the results
ver all the subjects. The latter one is to train the model with the data
f all the subjects but leave one subject out validation method. Ow-
ng to the controlled PA settings and less expensive labelling, the grid of
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Fig. 1. Concept of an IoT-based data fusion of PARM. 

Fig. 2. PA data collection and validation in IoT ecosystem [33] . 

Table 1 

PARM fusion concepts, keywords and their descriptions. 

Fusion concept Fusion keywords Description 

Device × Timeline Multiple sensors + a single 

group + lifelogging 

Use multiple wearable or ambient devices for a group of people with the similar 

physical characteristics (e.g., height, weight, age) for long-term PA monitoring in 

uncontrolled environment. 

Persons ×Devices Multiple devices + multiple 

groups 

Use multiple wearable or ambient devices to adapt different groups of people with 

the different physical characteristics (e.g., height, weight, age) for short term PA 

recognition, mostly in controlled environment. 

Timeline × Persons A single device + multiple 

groups + lifelogging 

Use a single wearable device to adapt on different groups of people with the 

different physical characteristics (e.g., height, weight, age) for long-term PA 

monitoring, in uncontrolled environment. 

271 
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Fig. 3. Typical sensors categories for PARM. 
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usion of persons and devices is capable to achieve high recognition rate
n variety of PA types across numerous subjects. 

The plane of timeline and people represent with only one device con-
inuously long-term monitor PA in a number of PA patterns especially
n free living environment, which are optimal state but one of the most
hallenging issues at the moment. The output of one sensor, on the other
and, may vary at different placement of an individual’s body. As such,
osition-dependant and position-independent theories are proposed to
ddress the issue. 

.2. Sensor categories for PARM 

The first one is to mount a single sensor on a certain place of the body
uch as hip [16,17] , back [30] , wrist [43] , chest [43] , waist or thigh
32,36] . Even the same PA from different placement may lead to vari-
us results. For example, Purwar et al. [37] found that placement on the
hest is better than the wrist in fall detection. Whereas from the perspec-
ive of fusion of timeline and persons, fixing at a specific position would
imit recognised PA types and impede long-range monitoring in a real
aily environment, so the other method is to allow the device/sensor to
ut on any part of an individual,’s body and thus improve its flexibility.
or instance, Khan et al. [38] validate an accelerometer freely carried
n any pocket of the body and achieved 94% accuracy in dynamic and
tatic PAR rate. 

Sensing techniques are adopted for the identification of objects and
athering information from sensors, tags, etc. Fig. 3 presents some typi-
al wearable sensor categories. The development of low-cost and small-
n-size wearable inertial sensors such as accelerometer, gyroscope and
hysiological sensors such as ECG, skin temperature sensor, also com-
ercial wearable devices such as wrist band or smart phones, with

mbedded GPS localization, Bluetooth etc., have facilitated the process
f measuring an individual PAs. An individual’s interaction with objects
eed to be assessed for home-based activity recognition like watching
V [41,42] . For these purposes, low-cost, easy-to-install on-object sen-
ors (e.g., environment sensors, binary sensors or RFID) can provide this
272 
ata in an unobtrusive and private way. Environmental sensors are used
or measuring indoor environmental conditions such as humidity, tem-
erature and energy [39,40] . Binary sensors can sense an object’s state
ith a digit of 0 or 1, representing on/off, open/close [53] . Indoor

ocalization sensors include Bluetooth, Radio-Frequency Identification
RFID) [44,45] and outdoor localization such as GPS [46,47] . 

.3. Data fusion categories for PARM 

In typical multi-sensor data fusion study, the categories of the
ata fusion methods have already been explored by many researchers
72–74] . The data fusion methods could be categorized as probabilistic,

tatistic, knowledge base theory and evidence reasoning methods. As
hown in Table 2 , probabilistic methods include Bayesian analysis of
ensor values with Bayesian networks, state-space models, maximum
ikelihood methods, possibility theory, evidential reasoning and, more
pecifically, evidence theory, KNN and least square-based estimation
ethods, e.g., Kalman filtering, optimal theory, regularization and
ncertainty ellipsoids. Secondly, statistic methods include the cross-
ovariance, covariance intersection and other robust statistics. Thirdly,
nowledge base theory methods include intelligent aggregation meth-
ds, such as ANN, genetic algorithms and fuzzy logic. Finally, the
vidence reasoning methods include Dempster-Shafer, evidence theory
nd recursive operators. Depending on the research purpose of the data
usion, these methods have advantages and disadvantages presented.

e will use this category to carry out our review in this paper. 

. Data fusion from device and timeline 

Data fusion from devices and timeline refers to multi-sensor data
usion technique for individual person based PARM. An amount of stud-
es has been carried out for one or more subjects targeting on differ-
nt Scenes. Some typical works are shown in Table 3 . Results have a
igh accuracy and there is a low computational load on each sensor.
o distinguish more PA types, placing multiple sensors/devices across



J. Qi, P. Yang and L. Newcombe et al. Information Fusion 55 (2020) 269–280 

Table 2 

Category of typical data fusion methods. 

Methods Advantages Disadvantages 

Probabilistic methods Model estimation, allow unsupervised classification Require a prior knowledge of information, 

Classification depends on the starting point 

Statistical methods High accuracy, Robust with unknown cross-covariance Complexity and larger computational burden 

Knowledge based theory methods Easy to implement, Inclusion of uncertainty and 

imprecision, Robust to noisy data Learning ability 

Require the intervention of human expertise, Lack of 

transparency of data, Difficulty in determining the 

size of hidden layer 

Evidence reasoning methods Assign a degree to uncertainty to each source Assigning a degree of evidence to all concepts 

Table 3 

Typical works of data fusion from devices and timeline. 

Works Persons and devices Approaches Advantages Disadvantages 

Sensor/Devices Group of Persons Analytic or Fusion 
approaches 

Targeted activities Result 

Multi-Sensor Signal 

Fusion 

2 3D ACC, 1 

ventilation sensor 

50 persons SVM [49] Postures, vacuum, 

cycle, play balls, 

work 

89.3% accuracy Measure PA types 

and associated 

data e.g., intensity 

Experiment carried 

out in controlled 

environment 

1 ECG, 1 ACC Multiple subjects SVM, GMM [31] Postures, play 

games, brisk walk, 

slow walk, run 

79.3% − 97.3% 

accuracy 

Multi-modality 

fusion 

Less robust system 

due to sensitive 

signals 

5 biaxial ACCs 20 subjects KNN [14] ambulation, 

posture, stretch, 

laundry, brush 

teeth, eat, drink, 

read, vacuum 

43% − 97% accuracy One type of sensor 

applied in 

context-aware 

environment 

Results and data 

from controlled 

environment 

1 3D acc, 1 3D 

gyro, 1 3D 

magnetic 

8 subjects Kinematic 

modelling [50] 

circular, reach, 

hand to mouth, 

flexion-extension, 

elevation 

95% − 98% accuracy Robust and easy 

setup on 

home-based stroke 

rehabilitation 

High cost 

1 3D seismic acc, 3 

gyro 

15 older patients Statistics for each 

axis [51] 

lying-to-sit-to- 

stand-to-walk 

(LSSW) test 

90% − 100% 

accuracy 

Fall detection for 

elderly and 

patients 

Limited test 

conditions 

Multi-Sensor Data 

fusion 

Ambient sensors, 

mobile phone 

One person Relational 

transformation 

[52] 

Read newspaper, 

eat and drink 

75.4 ± 7.8 

F-measure 

Better performance 

over HMM on ADL 

Only two activities 

evaluated 

Ambient sensors One person temporal evidence 

theory [53] 

Toilet, shower. 

dinner, breakfast, 

sleep, drink, leave 

house 

0.68 F-measure No need a large 

number of training 

data 

Less suitable for 

mapping of 

sensors to 

activities 

Ambient sensors One person Dempster–Shafer 

theory [54] 

Get drink, prepare 

dinner, and 

prepare breakfast 

0.82 Precision 0.32 

Recall 0.46 

F-measure 

Reduce 

uncertainties of 

multiple sensors 

Results obtained in 

controlled 

environment 

Ambient sensors One person Ontology [55] Activities of Daily 

Living 

94.44 accuracy No need a large 

number of training 

data 

Rules need to be 

predefined 

Cross Device and 

Sensor Data fusion 

1 3D ACC, 1 

wearable camera 

and microphone 

Many people SVM [56] Run, go down- 

stairs/upstairs, take 

an elevator, walk 

forward, etc 

90% − 99% accuracy Can be used in 

lifelogging health 

monitoring 

Capacity of large 

number of images 

are not mentioned 

1 watch with 1 

acc, 1 gyro, 1 

iPhone 4 

43 subjects Bayes [57] Belt on waist, 

thigh, shank 

79% − 95% accuracy Long-term 

monitoring 

inconvenient 

phone placement 

on wrist 

6 mobile devices 

and 2 smartphone 

apps 

44 people Gold Standard 

Measures [77] 

Five health 

indicators 

N/A As a PA related 

function outcome 

No fusion method 

7 wearable devices 60 people DPAS [78] EE and HR N/A As a PA related EE 

outcome 

No fusion method 
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he participant’s body. There are three multimodal data fusion methods
hown in the Table 3: fusion of wearable sensors consisted of consistent

atasets such as signals, fusion of high-level device comprised with dis-

rete datasets like the context-aware sensor types, last is the hybrid data
usion from the both sources (Tables 4 and 5 ). 

However, battery consumption of the devices is high when increas-
ng timeline operation. Also, numerous sensors attached on the human’s
ody is obtrusive and uncomfortable in daily lives, reduction of quan-
ity may cause the reduction of accuracy. Whilst the training models
273 
ay suffer from performances in natural environment due to a majority
f uncertain factors. 

Fusion of consistent datasets is by placement of multiple inertial sen-
ors (e.g., accelerometers, gyroscope, etc.) across the human body which
s capable to facilitate the process of recognition performance through
usion of sensing level and learning level, respectively. From the per-
pective of timeline longitude, by combing accelerometers with other
ensor types such as GPS is a significant setting to improve accuracy. In
he sensing level, Kalman filtering [20,21] , weight average, and compo-
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Table 4 

Typical works of data fusion from persons and devices. 

Works Persons and devices Approaches Advantages Disadvantages 

Devices Group of 
Persons 

Analytic or Fusion 
approaches 

Targeted activities Result 

Multi-Device Data 

Fusion 

Smart Phone, 

Smart Watch 

one person Twi-AdaBoost [66] User Location 0.38 m in X, Good location 

results by fusing 

the co-occurrence 

correlation, Low 

cost. 

Not direct measure 

PA associated data. 0.39 m in Y 

GRNN [67] 0.79 m in X, 

1.06 m in Y 

SVM [68] 5.07 m in X, 

6.47 m in Y 

LR [69] 6.74 m in X, 

7.72 m in Y 

Wrist band, 

Smart Glasses 

One Person Offline Extreme 

Learning Ma- 

chine + Probability 

vector [70] 

Fall detection N/A can be used for 

dynamic health 

monitoring. 

Not sure about the 

accuracy 

Multiple Wearable 

Device Data 

Analytic 

ActiGraph, Fitbit 19 volunteers Statistical 

significance [71] 

Frequency and 

Duration of Bout, 

PA Intensity Level 

Fitbit accuracy 62–100% 

AG accuracy 25–64% 

Fitbit has more 

potential for 

largescale PA 

assessment study. 

Not consider all 

possible 

population. 

Fitbit flex, Polar 

Loop 

Two persons Mean, STD [75] Steps count and 

distance 

Fitbit accuracy + 4% PL 

accuracy − 11% 

Fitbit Flex is more 

accuracy for 

Distance measure. 

Not consider all 

possible 

population 

Fitbit, Nike 

Fuelband, Nike 

Sportsband, 

Moves, 

Pedometers 

One person Mean, STD, data 

correlation [75,76] 

Steps count and 

distance 

Fitbit accuracy + 1% for 

step recording, Nike Fuel 

band accuracy − 8% 

Fitbit Flex is the 

best one for step 

recording. Move is 

the worst one for 

step recording 

Not consider all 

possible 

population 

Flex, One, iHealth, 

Vifit, Withings, 

Jawbone, Moves 

One person Mean, STD [33] Steps, Distance, 

Calories 

Fitbit one accuracy STD 

+ 1.5%, Moves accuracy 

STD 25% 

Fitbit Flex is the 

best one for step 

recording. Move is 

the worst one for 

step recording 

Not tested all 

possible 

population 

Cross-device PA 

assess indicator 

No specific 

devices 

Many people MAPS Score [81] PA intensity level N/A As a PA related 

function outcome 

No fusion method 

7 wearable 

devices 

30 people DPAS [33] PA intensity level N/A As a PA related 

function outcome 

No fusion method 

6 mobile devices 

and 2 smartphone 

apps 

44 people Gold Standard 

Measures [77] 

Five health 

indicators 

N/A As a PA related 

function outcome 

No fusion method 

7 wearable 

devices 

60 people DPAS [78] EE and HR N/A As a PA related EE 

outcome 

No fusion method 
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ent analysis are the typical approaches to process the sensor signals.
he match scores from the different models are then fused on the score

evel to generate a final recognition decision. Score level fusion is the
ost commonly used in recognition systems [31] as the some feature

ets from multiple models may not be compatible and it is therefore eas-
er to access and combine scores created by different subsystems. Other
orks have more focused point on the learning level fusion through ma-

hine learning approaches Classifying PA using features extracted mul-
iple sensors or a network of accelerometers have typically made use of
he K-nearest neighbour (KNN) and naïve Bayes (NB) techniques [12] ,
tc. For example, using an SVM algorithm to fuse data collected from
arious sensors is investigated by Qian et al. [48] in order to more ac-
urately determine the PA. This is done using SVM as it can calculate a
ecision boundary to separate activities from one another. For multiple
ctivities, they take a “one against one ” approach to separate them and
roduce a model for each. Each model produced will be tested against
 data point, which will then receive a vote to decide which activity
hould be associated to it. The activity with the majority of votes will
e identified as the new data point that the activity is associated with.
or many applications in machine learning, the use of all relevant data
o extract more information from multiple sources can achieve a desired
ncrease in accuracy [58] . Consulting multiple classifiers and combining
he outputs always tend to provide a performance increase compared to
sing an individual classifier [59] . Data fusion of persons and devices
an be achieved by employing available information from each model
hat complements one another. Feature level fusion is proposed by Li
274 
t al. [31] , which requires feature sets from multiple models to be com-
atible. Their aim is to fuse two feature sets in order to produce a new
eature vector that can more accurately represent a physical activity.
nly different axis features from accelerometers were used in the fea-

ure level fusion from the cepstral domain. This is due to cepstral fea-
ures may not be compatible with temporal features and the calculation
or temporal features is greater. 

Fusion of high-level devices make use of ambient sensors (e.g., RFID)
r wearable camera at context-aware and home-care elderly environ-
ent for long-term monitoring. With installing of numerous ambient

ensors, A knowledge driven approach is the mostly used for continuous
ctivity recognition. Defining profiles for each activity performed based
pon gathered knowledge can greatly improve activity recognition [60] .
 knowledge-based approach addresses the difficulty in modelling ac-

ivities of daily living due to their diversity and flexibility by providing
 unified model [61] . Knowledge of the environment, events and how a
erson performs an activity contribute to how results are modelled. The
ata-centric models proposed by Chen et al. [61] makes extensive use of
omain knowledge in the activity recognition life cycle. A knowledge-
ased approach addresses the challenges of modelling activities due to
he diversity in daily living activities and the flexibility when perform-
ng them by providing an ontological model. Ontological models can
odel daily activities as generic activity structures for example: the ter-
inology for daily activity ontologies and specific user activity profiles.
ight daily activities that are typical in the home environment were se-
ect for [61] experiment. For each activity, an appropriate sensor was
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Table 5 

Typical works of data fusion from persons and timeline. 

Works Persons and Timeline Approaches Advantages Disadvantages 

Persons Timeline Analytic or Fusion 
approaches 

Targeted activities Result 

Adherence analysis 

of PA data 

753 users (Fitbit) 77,000 days Percentage, Mean, 

SD, CI [83] 

Average step count N/A Adherence 

measure is key to 

analysis 

incompleteness of 

PA Data 

Not direct measure 

No fusion method 

50 community 

participants (Fitbit) 

4 weeks Percentage [82] PA data 

incompleteness 

94% people wore it 

for all 28 days, 6% 

people wore it for 

26 days 

Adherence can be 

measured for 

better data fusion 

Not test all 

population. No 

fusion method 

188 participants 

(ActiGraph GT3X + ) 
2 years (2013 and 

2016) 

Mean, SD, 

Frequency and 

Percentages [90] 

PA data Adherence to 

53.5% in the AR 

group and 63% in 

the PR group 

Adherence to PA is 

objective and not 

easily affected. 

Not test all 

population. No 

fusion method 

Interpersonal 

Difference analysis 

of PA data 

17 participants 

two groups 

18 days T-test, Sliding Pairs 

P-value, Baseline 

pairs P-value [86] 

Heart rate, Steps. N/A Different groups of 

participants have 

significant 

difference on daily 

steps 

Not test all 

population. No 

fusion method 

2 participants 40 nights Bland-Altman plots 

[87] 

Sleep tracking N/A Validity of 

wearable device is 

strongly associated 

to personal 

lifestyle habit 

Not test all 

population No 

fusion method 

Density Map Fusion 42 Infrared motion 

sensors 

2–3 months Colour Level 

Density 

map + Fuzzy rules 

[45] [91,92] 

PA intensity level N/A Better accuracy 

than single month 

measure 

No fusion method 

Colour Level 

Density 

Map + Linguistic 

Protoform 

Summaries [93] 

12 people 8 months Grey Level Density 

Map + Dempster- 

Shafer Theory 

[88] 

PA intensity level N/A Better accuracy 

than single month 

measure 

Need more data to 

verify the method 

Time Series PA 

change detection 

11 people Fitbit 1 week Unconstrained 

Least-Squares 

Importance Fitting 

[94] Textured 

dissimilarity [95] 

Sw-PCAR [96] 

Virtual classifier 

[97] 

Number of bouts, 

Bout minutes, 

Daily Steps 

N/A Contextual features 

are easily detected 

Need continuous 

PA data 
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ttached to an object. For example, a kettle had a tilt sensor attached
o it to detect the pouring of water. The performance of each activity is
pecified based upon domain knowledge. Three male participants took
lace in the experiment and repeated each activity three times. An inter-
al of thirty seconds was set between two consecutive actions. Collected
ata was used for activity model learning and user profile learning. Fur-
hermore, the purpose to use the probabilistic reasoning is to handle
mbiguous and noisy information from multiple sensors in smart home.
 typical work like [62] , 77 low-cost environmental sensors are installed

n occupants’ homes which are uncontrolled living environments to de-
ect specific activities to medical professionals such as toileting, bathing
nd grooming. It is to encode large numbers of binary temporal relation-
hips in the naive Bayesian network classifier with a feature window for
ach activity duration. Similar studies [63,64] propose Dempster–Shafer
heory of evidence (DST)-based structure to incorporate the uncertainty
erived from the sensor errors in a context-aware environment. Activity
toileting ” as a typical case study in [64] makes use of five sensors (toi-
et light, bathroom hot tap sensor, bathroom cold tap sensor, bathroom
abinet sensor and flush sensor) under the condition of unavoidable and
npredictable sensor errors. 
275 
In the hybrid data fusion method, combinations of wearable camera,
earable sensors and ambient sensors are the key tools for lifelogging
ctivity monitoring. The wearable camera is a form of visual lifelog-
er that can be worn over one’s neck. It is explored as an everyday
ctivity data recorder via computer vision techniques. Compared with
urveillance cameras, its personal privacy is highly improved. Nam et al.
56] present lifelogging PA monitoring using wearable camera and ac-
elerometer with optical flow for video processing. A series of rules are
efined based on Priority Maximum Values to identify PA. The work also
ompared the results of each sensor and sensor fusion toward nine PAs
ike taking elevator, walking forward, going upstairs, etc. The fusion ap-
roach gives overall recognition accuracy over 92.78%. Similarly, Using
n SVM algorithm to fuse data collected from various sensors is inves-
igated by Liu et al. [49] in order to more accurately determine the
hysical activity. This is done using SVM as it can calculate a decision
oundary to separate activities from one another. For multiple activities,
hey take a “one against one ” approach to separate them and produce
 model for each. Each model produced will be tested against a data
oint, which will then receive a vote to decide which activity should be
ssociated to it. The activity with the majority of votes will be identified
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s the new data point that the activity is associated with. A system based
n a network of multiple wireless-interconnected-medical sensors is pro-
osed by the work [34] . This setup allows for the collection of medical
ata from typical daily activities. They note that the typical solution of
 single versatile system is less flexible and takes longer to design and
mplement. Instead, the multi-sensor solution provides the benefit of the
omponents being ready to use. 

. Data fusion from persons and devices 

Differing with multi-sensor data fusion techniques, data fusion from
ersons and devices is based on a fact that an IoT enabled platform will
e connected with heterogeneous devices and be used by a large group
f populations. The data fusion techniques in this 2D plan is similar to
ulti-devices data fusion approaches, but we only concern one type of
A associated data. Meanwhile, due to difference of physical fitness and
cceptance of wearable devices, persons wearing different devices will
roduce PA data with huge uncertainty. The qualitative identification of
mpacting factors and quantitative measure their impacts to IoT enabled
A data are key to data fusion approaches. There are work [28,65] in
tudying intrinsic and extrinsic factors through wearable data analytic
nd comparison in multiple devices. Lastly, some standardized PA mea-
ure scores have been built up for specifically validating and benchmark-
ng PA fitness cross devices and persons. Consequently, we category the
ork in this direction into three subjects: (1) Multi-devices data fusion,

2) Multiple devices data analytic, (3) Cross-device PA assess indicator.
Multi-devices data fusion techniques have been studied for decades,

specially fusing in wireless sensor network or indoor localization. For
nstance, Yuan et al. [66] have proposed an effective Twi-Adaboost al-
orithm for pursing the location data fusion of smart watch and smart
hone, which reduce the localization errors up to 0.387 m on X axis and
.398 m on Y axis. This data fusion approach offers better localization
ccuracy than Generalized Regression Neural Network (GRNN) [67] ,
upport Vector Regression (SVM) [68] and Linear Regression [69] . Also,
he study [70] developed a mobile phone based open pervasive wear-
ble data fusion platform WearableHuB for real-time personal health
anagement. In this method, they represent a case that fusing wrist-

and and glasses with a probabilistic vector fusion enable accuracy fall
etection. But the limitation of these work to PARM is that their targets
re not directly associated PA data. But we believe these multi-device
ata fusion approaches can be used in PARM cases. 

Regarding to multiple wearable device data analytic, it focuses on
tudying a variety of wearable devices in the market regarding their
ccuracy in data acquisition. Barrett, et al. [71] has compared the accu-
acy and robustness of two wearable devices (Fitbit and ActiGraph) in
outs and intensity of PA. The results show that Fitbit is more suitable to
arge-scale PA assessment, with accuracy 62–100% over 16 PA subjects
n 19 volunteers. 

Similarly, Schneider et al. [75] has compared Fitbit Flex and Polar
oop in measuring steps count and walking distance in a simple experi-
ent. It shows that Fitbit Flex gives rough 5% up to accuracy than Polar

oop, which is more suitable to PA measure. The work in [76] has ex-
mined the performance of five key wearable devices that record the
hysical activity of a user throughout a day in terms of accuracy, type
f data provided, available APIs, and user experience. The results also
how that Fitbit is the best one for step recording, with only 1% accuracy
rror. From above work, it appears that there are definitely some intrin-
ic tracking errors with different wearable devices. But to quantitatively
dentify these errors enable a simple and easy mode of data-fusion pro-
ess. The only issue is that the impact of these errors might differ with
ifferent possible group of populations. It needs to be weighted in future
using these PA data. 

Apart from above work sorely comparing performance of wearable
evices on one person, some researchers have begun to consider
valuating cross-device PA assess indicator like energy expenditure
EE), distance, level of PA, etc. amongst a large group of population.
276 
ie et al. [77] has evaluated six devices (Apple Watch 2, Samsung Gear
3, Jawbone Up3, Fitbit Surge, Huawei Talk Band B3, and Xiaomi Mi
and 2) and two smartphone apps (Dongdong and Ledongli) in 44
ealthy participants; the authors measured five major health indicators
HR, number of steps, distance, energy expenditure, and sleep duration)
nder various activity states (resting, walking, running, cycling, and
leeping) against gold standard measurements. The tested wearables
ad high measurement accuracy with respect to heart rate, number of
teps, distance, and sleep duration, but EE measurements made by these
earables were associated with lower measurement accuracy. Also,
hcherbina et al. [78] tested seven wrist worn devices (Apple Watch,
asis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and
amsung Gear S2) in estimating HR and EE against continuous teleme-
ry and indirect calorimetry while 60 volunteers engaged in sitting,
alking, running, and cycling. The results indicate that most wrist-
orn devices adequately measure HR in laboratory-based activities but
oorly estimated EE [78] . Also, in the work [81] , the MAPS formula
as created to incorporate measures of activity, time, and location to
roduce a single composite score: Movement and Activity in Physical
pace (MAPS) score. We also extended this MAPS score as DAPS score
33] into our early lifelogging PA analysis model. These two indicators
ncompass both physical activity and environmental interaction. A
igher score indicates a higher level of function, which is based on a
ombination of more activity and greater environment interaction. The
esults provide a foundation of convergent and known-group difference
alidity evidence along with reliability evidence for the use of MAPS
nd DAPS as a unified PA functional outcome measure across a wide
ange of different wearable devices or mobile apps. 

Thus, while there are no specific definition of data fusion methods in
hese cross-devices PA health-related indicators, they could be used to
ccurately and precisely define and detect pathophysiological phenom-
na. While a large portion of clinical care relies on the use of patient-
pecific health data (e.g., history and physical examination, laboratory
nd other test results, imaging tests, etc.) and human clinical decision
aking, much of this care occurs in the traditional brick-and mortar
ealth setting, under a multitude of systemic constraints [79] . Given
hat changes in health status often occur gradually outside of the hospi-
al and clinic [80] , there is a clear role for remote monitoring of various
atient populations to collect and process longitudinal health data into
iagnostic, prognostic, and treatment-related insights. 

. Data fusion from timeline and persons 

Regarding data fusion from timeline and persons, it is more like lon-
itude analysis of a group population personal data over a long period.
hus, typical statistical analysis and fusion approaches in longitude data
nalysis are widely used and surveyed. However, the incompleteness
nd validity of PA data are important in this plane of persons and time-
ine. Recent study has pointed the importance of adherence to incom-
leteness of wearable data and the interpersonal difference to validity
f wearable data in an IoT enabled ecosystem. Lastly, some recent stud-
es have proposed some ideas to build up a monthly density map of PA
ntensity for fusing a long period of data in order to better predict users’
A level with life pattern. Thus, we category the work in this direction
nto three subjects: 1) Adhere analysis of PA data, 2) Interpersonal dif-
erence analysis of PA data, 3) Density map fusion techniques. 

The adherence analysis of wearable PA data has been studied
82,83,89,90] and focused on measure of data completeness, since
eople do not wear or carry tracking devices every day. Early studies
f Wearing Behaviour have explicitly studied wearing behaviour and
atterns. It indicates wide differences in wearing behaviour and asso-
iated with these diverse levels of data completeness [84] . Meyer et al.
85] also reported wide differences in daily adherence, 20% to 100% of
ays being valid. At the same time, some work has studied the factors
ffecting wear-time, including age, gender and environment; day of
eek; time of day. This small but growing body of work highlights
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hat there are diverse levels and patterns of wearing behaviour and so
iverse levels of data completeness. 

More recently, in [82] , Tang et.al has provided guidelines for defin-
ng adherence, analysing their impact and reporting it along with the
esults of the tracker data analysis over different datasets. Their find-
ng shows that minimum step-measures were similar to most datasets,
he through-the-day measures had diverse impacts on PA data. The data
usion method needs to identify the correct threshold parameters for
gnore some PA data in the dataset. Similarly, Xu et.al [83] has also
tilised Fitbit devices to collect and observe 50 community participants’
A data in a 4-week study. The overall results show that 94% people
ore it for all 28 days, and 6% people wore it for 26 days. Overall, par-

icipants wore their Fitbits (for at least part of the day) on almost all
ays (99.57%) of the study, although there were individual differences.
n addition, Rudolf et al. [89] has studied the impact of different recruit-
ent strategies on ActiGraph GT3X + devices by regression analysis, Re-

ults show that PA data were objectively collected by individual, and
ot impacted by external interventions. Importantly, Qi et al. [88] has
onducted a review in studying the use of wearable trackers for measur-
ng a series of PA associated data for older adults. His survey includes 12
ifferent wearable devices and 20 studies, where the finding highlighted
hat methodological designs for PA data collection in IoT environment
ere heterogeneous, so that there is no standardised method for quanti-

ying data for wearable devices in older adults. In other words, there are
lso no concluded data fusion approach for integrating these wearable
A data perfectly so far. 

The second category in this field is to investigate the impact of in-
erpersonal difference on PA data. In [86] , Dahmen etal. studied fine-
rained, continuous physical activity and heart rate data collected from
itbits worn by 8 participants in the health group and 9 participants in
he rehabilitation group. They analyse the longitudinal physical activ-
ty data collected from both groups to gain insights into the detected
hanges over time in both an inpatient setting and a free-living set-
ing. And it found that two groups of participants have similar variation
n daily heart rates, but significant difference on daily steps. Similarly,
iang and Mattell [87] have investigated interpersonal difference by two
articipants over 40 nights in validating wearable sleep-tracking tech-
ologies including Fitbit and Neuroon. They use Bland-Altman plots of
ggregated sleep metrics measured by Fitbit and Neuron. The results
how that the validity of wearable device is strongly associated to per-
onal lifestyle habit. Thus, above work proves that each individual has
ts own lifestyle pattern, which possibly affects wearable sensing PA
ata. Utilising statistical analysis method could potentially explore the
eights of these data and further fusing them accordingly. 

Apart from statistical analysis method, 1D time serious based PA
nalysis approaches have been studied a lot. These approaches have
uantified change statistically [94] , graphically [95] and algorithmi-
ally [96,97] . Liu et al. [94] extracted features derived from actigra-
hy data collected for at least one year. Each feature was individually
orrelated with a component of the Resident Assessment Instrument
or insights into how longitudinal changes in actigraphy and function-
ng are associated. Albregtsen et al. [95] introduced another activity-
ased change detection approach in which passive infrared motion
ensors were installed in apartments and utilized to estimate physical
ctivity in the home and time away from home. The data were con-
erted into co-occurrence matrices for computation of image-based tex-
ure features. Relative Unconstrained Least-Squares Importance Fitting
RuLSIF) [96] is one such approach used to measure the difference be-
ween two samples of data surrounding a candidate change point. Hido
t al. [ 97 ] formalized this problem as change analysis, a method of ex-
mination beyond change detection to explain the nature of discrep-
ncy. Hido’s solution to change analysis utilizes supervised machine
earning algorithms, specifically virtual binary classifiers (VCs), to iden-
ify and describe changes in unsupervised data. 

Some recently pilot studies [45,88] have proposed an idea to transfer
D time series-based PA data into 2D day-hour based monthly density
277 
ap for analysis and fusion. In [45] , Wang et.al present a methodol-
gy for analysing PA data captured by home based passive infrared mo-
ion sensor. Though building up a PA intensity level-based density map,
hey measure dissimilarity and detect changes in PA pattern between
wo monthly maps via texture features. The results show that activity
ensity maps can be used in an ageing in place senior housing commu-
ity to aid clinicians in early illness detection, particularly track general
ctivity level and daily patterns over time, showing changes in physi-
al, cognitive, and mental health. Also, we [88] have used a similar
dea by constructing a PA intensity based grew level density map us-
ng Fitbit device by 12 people. After measuring the dissimilarity of each
wo monthly maps, we have proposed an evidence theory-based Bayes
robabilistic model to fuse multiple monthly maps in order to identify a
alidated human PA intensity pattern. The results indicate that our den-
ity map-based data fusion approaches effectively improve the accuracy
f predicting PA intensity of individual person. 

. Discussion and future directions 

.1. Quantifying uncertainty of PA data in an IoT ecosystem 

As we demonstrated in Section 2 , PA data collected in an IoT ecosys-
em is dynamically increased from three dimensions. Thus, it will be
ffected by a lot of influencing factors, which has not been properly
efined and quantified. In most IoT environments, it will be equipped
ith a majority of ambient sensors for ADLs detections, and data cap-

ured from the heterogeneous sensors may contain a variety of uncer-
ainties including hardware errors, battery exhausted or transmission
ssues. Some intrinsic uncertainties are unavoidable and uncontrolled. 

Moreover, there are also unpredictable errors from using popular
A tracking devices such as mobile phone and smart watch. For ex-
mple, irregular uncertainties may come from malfunctions or faults,
reakdown of a third-party server. And regular uncertainties often occur
ike battery life, differentiation of personal physical characteristics and
hanges of environment. As the possibility of each sensor’s uncertainty
an be obtained from the manufacture’s testing statistics, probabilistic
usion approaches are generally able to address the issue. Nevertheless,
A recognition results offered by third party devices are widely diver-
ent so that making its information turn to be scattered, erroneous and
imited for healthcare uses. 

Thus, one important direction of future data fusion technique in IoT
nabled PARM study is to identify the potential factors leading to uncer-
ainties of PA data, and potentially quantitatively measure their impacts.
or instance, as we reviewed in previse sections, adherence to wearable
evices and acceptance to technologies are both causes leading to po-
ential uncertainties in PA data. How to handle with uncertainties and
ore effectively harnessing these PA data would be greatly importance.

.2. Human-in-the-loop 

Another key issue we surveyed before is that human factors play
mportant role in collecting and analysing PA data in an IoT environ-
ent. Traditional data fusion approaches usually do not consider the
uman factors too much, where is more suitable to a human-out-the-
oop system. In the IoT environment, human life patterns greatly affect
he uncertainty of observed PA data. Thus, we need to consider future
ata fusion methods as a human-in-the-loop mode. 

More specifically, Human-in-the-Loop refers to that the fusing rules
re supposed to be adaptively altered regarding the properties of its
uman factor, like age, gender, group or interaction, etc. For instance,
n our work [33] , it gives a performance comparison of individual and
roup population (14 persons with similar professions and backgrounds)
n removing IUs. We estimate the change of daily steps Ts and DAPS
ith different periods (from 1 month to 12 months) with a confidence

nterval of 95%. The results indicate that the rules of LPAV-IoT model
ill be altered in terms of different setting of human factors. However,
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his experiment only deals with a nature increment of life-logging PA
n timeline and population dimensions. It is not a strict performance
valuation of human-in-the-loop in the proposed model by considering
 human interaction with model. The involvement of collecting user
eedbacks as a step of the validation algorithm is not hard to be imple-
ented in the model but requires a long period of time on redesigning

xperimental strategies and collecting relevant life-logging data. 
Thus, it will be put as one of key future works in developing data

usion approaches, which is to continue a formal human-in-the-loop val-
dation of the model by involving users’ feedbacks for updating fusing
ules. 

.3. Advanced learning approaches for IoT enabled PA data fusion 

There have been always advanced and new learning approaches on
he board of data mining, such as multi-task learning and deep learning
echniques in processing large-scale IoT data. 

Due to great utilisation in multi-modality data fusion applications,
ulti-task learning techniques have recently been drawn a great atten-

ion. The multi-task model is constructed based on the traditional linear
egression algorithm. This idea is developed from the theory of Frequen-
ist in statistics and belongs to the category of statistical machine learn-
ng. The core strategy of this idea is to optimize by constructing a loss
unction. For many multi-modality data fusion applications, multi-task
an be customized to explore contacts based on research scenarios. For
xample, in the face of fusing a large number of features from heteroge-
eous data resources, the concept of introducing “groups ” can apply all
roup feature factors in batches or choose to discard. In order to make
he model also have the ability to fuse multiple sources of data, the mul-
itasking model can be further developed to consider multimodal data
n the learning process. 

On the other hand, deep learning techniques are also quite popu-
ar. Deep learning could abstract the features of a multi-layer network
tructure to expect deep network nodes that can directly predict disease
rogression. For instance, in the prediction of AD disease progression,
he most commonly used deep learning model is the recurrent Neural
etworks (RNN), and its greatest advantage is the prediction of time

eries problems. Using longitudinal data for disease model building is a
hallenging task. RNN can help to resolve the relationship dependence
etween different time points by using its characteristics that can mem-
rize historical information. In addition, longitudinal data is valuable
ue to its difficulty in obtaining and excessive cost, and RNN can sup-
lement incomplete data to further improve forecast performance. 

Above two key techniques have already been widely used in multi-
odality healthcare related applications, such as disease prediction. The

ppliance of PARM is strongly associated to healthcare, thus we believe
hese two techniques have huge potential in further exploration for IoT
nabled PARM study. 

.4. Practical value 

Practical value of data fusion approach is importance but rarely ver-
fied in IoT enabled systems in literature. The primary issue is that most
f valuable data is kept by companies and not open to public. In this
aper, we have provided a pioneered investigation perspective for con-
idering data fusion techniques from 3 dimension in an IoT environment.
hile data fusion techniques have been seen as a hot topic in research in

he last twenties years, it recently becomes more accessible and practi-
ally significant with the recent prevalence of mobile devices connecting
n IoT systems. In the healthcare field, due to significant population age-
ng in the coming decades, data fusion technology requires considering
ts mode from conventional hub-based system to personalised health-
are system. The successful design and utilization of data fusion into
ractical will enable more accurate measure and monitoring of daily
hysical activity with low cost devices, further lead to faster and safer
278 
reventive care for chronic diseases. Therefore, we believe the transfer-
ing and verification existing data fusion methods into valuable practice
ill be an important future direction. 

. Conclusion 

PARM has significant benefits for improving the quality of life of a
erson who suffers with chronic diseases and maintain fitness for ac-
ive healthy people. Data fusion is an effective approach to achieve bet-
er performance of the PA model. From numerous literatures, we can
afely conclude that the PAR using a small number of wearable devices
n the uncontrolled environment within different categories of subjects
re not fully and successfully resolved. In an effort to understand po-
ential use and opportunities of Data fusion techniques in IoT enabled
ARM applications, this paper gave a systematic review, critically ex-
mining PARM studies from a perspective of a novel 3D dynamic IoT
ased physical activity collection and validation model. It summarized
raditional state-of-the-art data fusion techniques from three plane do-
ains in the 3D dynamic IoT model: devices, persons and timeline. The
aper goes on to identify some new research trends and challenges of
ata fusion techniques in the IoT enabled PARM studies, and discusses
ome key enabling techniques for tackling them. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.inffus.2019.09.002 . 
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